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3. Proposed Methodology

1. Introduction
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2. Current Solution and Challenges

Supervised Models for

Crystal Shape Classification using

Supervised Deep Learning Computer Vision Tasks nanc ‘ JHREEEE L L
ImageNet Classifiers
» ResNet (18,34,50) -
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Task-agnostic
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Common Sense

= Manual: Crowd Source
vs Experts

= Automated Platforms :
Amazon Rekognition,
GCP

= Estimated Market
Value in 2022:
US$0.8B vs
Forecasted Market
Value by 2027
US$3.6B

= |S this a Plate or
Needle? What to label
If it is visibly too dark?

» Deviation of the truth
from Human perception

» Learnings can be rigid
and does not always
work accurately
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Source: www.freecodecamp.org
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SIMCLR outperforms all supervised models for

our experiment data; can match supervised
models if trained for longer on CIFAR10 data

with better suitable optimizer

«  |labels at all for training,

SIMCLR seems to
address the challenges
faced by supervised
approach, with decent
accuracy and more
distinctive classification

For N augments per
Image, training data
Increases N times;
longer training time and
more computation power

.

Small fraction of
data that has
class labels

Big CNN

Unlabeled
data

Unlabeled
data

https://arxiv.org/abs/2006.10029

S|mCLRv1
Modified architecture and
training with small fraction of
annotations.

Training with 10% annotations
SIMCLRvV2 surpasses SOTA
both supervised and
unsupervised models.
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